ÇòËÙÌåÓý

±±¾©»ùÒò×éËù£¨¹ú¼ÒÉúÎïÐÅÏ¢ÖÐÐÄ£©µÈÏàÖúÑз¢µ¥Ï¸°ûºÍ¿Õ¼äת¼×éÖл·ÐÎRNAÉî¶ÈѧϰËã·¨

»·ÐÎRNAÊÇÒ»Àà¹ã·º±í´ïµÄ·Ç±àÂëRNA £¬ÓнϸߵÄϸ°ûÀàÐͼ°×éÖ¯±í´ïÌØÒìÐÔ £¬ÔÚÆ÷¹Ù·¢Óý¼°Ö×Áö±¬·¢µÈÀú³ÌÖÐÆð×ÅÖØÒªµÄµ÷¿Ø×÷Ó᣻·ÐÎRNAÓÉ3¡®¶ËµÄÊÜÌåλµãºÍ5¡¯¶ËµÄ¹©Ìåλµã¹²¼ÛÁ¬½ÓÐÎ³É £¬ÕâÒ»Àú³Ì±»³ÆÎª·´Ïò¼ô½Ó £¬È»¶øÓÉÓÚȱÉÙpoly(A)β £¬»·ÐÎRNAÎÞ·¨±»¾­¹ýpolyA¸»¼¯µÈת¼×齨¿â·½·¨ÓÐЧ²¶»ñ¡£Òò´Ë £¬»·ÐÎRNAµÄ±í´ïÐÅÏ¢ÔÚ¾ø´ó²¿·Öµ¥Ï¸°ûÒÔ¼°¿Õ¼äת¼×éÊý¾ÝÖÐȱʧ¡£ÎªÁË»ñµÃ¸»ºñµÄµ¥Ï¸°û¼°¿Õ¼äˮƽµÄ»·ÐÎRNA±í´ïÐÅÏ¢ £¬ÐèÒªÑз¢ÐÂÐÍ»·ÐÎRNA±í´ïÔ¤²âËã·¨¡£

ÇòËÙÌåÓý£¨¹ú¼ÒÉúÎïÐÅÏ¢ÖÐÐÄ£©¸ßÔ¶ÍŶÓÓëÇòËÙÌåÓý±±¾©ÉúÃü¿ÆÑ§Ñо¿ÔºÕÔ·½ÇìÍŶÓÁªºÏÑз¢ÁËÉî¶ÈѧϰģÐÍCIRI-deep £¬ÒÔ׼ȷԤ²â²î±ðÑù±¾¼äµÄ²î±ð¼ô½Ó»·ÐÎRNA¡£¸ÃÄ£ÐÍ´Ó»·ÐÎRNAµ÷¿Ø»úÖÆ½Ç¶È³ö·¢ £¬ÕûºÏÁË3527¸ö»·ÐÎRNAÌØÒìµÄ˳ʽԪ¼þÒÔ¼°1499¸öÑù±¾ÌØÒìµÄ·´Ê½Òò×Ó×÷ΪÊäÈëÌØÕ÷ £¬ÇÒ²»ÒÀÀµÓڹŰåµÄ·´Ïò¼ô½ÓÐźÅʶ±ð £¬¿ÉÒÔÔÚÈÎÒâת¼×éÑù±¾¼äÔ¤²â²î±ð¼ô½ÓµÄ»·ÐÎRNA¡£ÆÀ¹À½á¹û±êÃ÷ £¬CIRI-deep¿ÉÒÔʵÏÖ¶àÖÖת¼×é²âÐòÊý¾ÝÖвî±ð¼ô½Ó»·ÐÎRNAµÄ¿É¿¿Ô¤²â £¬²¢ÔÚµ¥Ï¸°û¼°¿Õ¼äˮƽʵÏÖϸ°ûÀàÐÍÌØÒì»·ÐÎRNAµÄ׼ȷ½âÎö £¬¾ßÓй㷺µÄÓ¦Óó¡¾°¡£

Ñо¿ÍŶÓÊ×ÏÈ´Ó397¸öÉî¶È²âÐòµÄȫת¼×飨total RNA-seq£©Ñù±¾ÖÐʶ±ðÁËÁè¼Ý2500Íò¸ß¶È¿ÉÐŵĻ·ÐÎRNA²î±ð¼ô½Óʼþ¡£ÓÉÓÚÕâЩ¼ô½ÓʼþÁýÕÖÁË25¸öÈËÌå×éÖ¯ £¬Ê¹ÓÃËüÃÇ×÷ΪѵÁ·¼¯ £¬Ê¹CIRI-deep¾ßÓÐÁ¼ºÃµÄ·º»¯ÐÔÄÜ¡£CIRI-deepÔÚ²âÊÔÊý¾Ý¼¯ÉϵÄAUROCÖµµÖ´ïÁË0.906 £¬²¢ÇÒ¿ÉÒÔ׼ȷԤ²âÀ´×Ô·ÇѵÁ·¼¯²¡ÀíÌõ¼þÓëÕý³£Ñù±¾¼äµÄ»·ÐÎRNA²î±ð¼ô½Ó¡£±ðµÄ £¬ÔÚµÍÉî¶È²âÐòµÄת¼±¾ÖÐ £¬CIRI-deep¶Ô²î±ð»·ÐÎRNAµÄÔ¤²âЧ¹ûÓÅÓÚ»ùÓÚreadsÊýµÄͳ¼Æ¼ìÑéÒªÁì¡£

ΪÁ˽âÊÍCIRI-deepµÄÔ¤²âÔ­Àí £¬Ñо¿ÍŶÓÑз¢ÁËÒ»ÖÖÉî¶Èѧϰ¿É½âÊÍÐÔÆÊÎö¿ò¼ÜAdapted Integrated Gradient£¨AIG£© £¬ÒÔÁ¿»¯ÆÊÎö×éÖ¯ÌØÒì»·ÐÎRNAµÄµ÷¿ØÒòËØ¼°ÆäТ¾´¡£½á¹û±êÃ÷ £¬Ïà½ÏÓÚ»ùÒòÐòÁнṹµÈ˳ʽԪ¼þ £¬RNA½áºÏÂѰ׵ȷ´Ê½Òò×ӵıí´ïˮƽ¶ÔÔ¤²â׼ȷÐÔµÄТ¾´¸ü´ó £¬ÇÒ¾ßÓиüÇ¿µÄ×éÖ¯ÌØÒìÐÔ¡£¸ÃÆÊÎö¿ò¼ÜÑéÖ¤ÁËÒÑÖªµÄ»·ÐÎRNA¼ô½ÓµÄµ÷¿ØÒòËØ £¬Èç¼ô½Óλµã £¬ÄÚº¬×ÓÇøÓòµÄAluÔª¼þ £¬FUSÂѰ׵ıí´ïµÈ £¬Ò²ÌáʾÁË֮ǰδ·¢Ã÷µÄDZÔÚµ÷¿ØÒò×ÓÈçNOVA2 £¬KHDRBS3µÈ¶Ô»·ÐÎRNA¼ô½ÓµÄÓ°Ïì¡£

ΪÁË´ÓpolyA¸»¼¯²âÐòµÄµ¥Ï¸°ûÒÔ¼°¿Õ¼äת¼×éÊý¾ÝÖÐÍÚ¾ò»·ÐÎRNA±í´ïˮƽ²î±ð £¬Ñо¿ÍŶӽøÒ»²½ÀûÓÃpolyAÊý¾ÝѵÁ·ÁËCIRI-deepAÄ£ÐÍ¡£½á¹û±êÃ÷ £¬CIRI-deepAµÄÔ¤²âÌåÏÖ´ó·ùÁè¼ÝÖ±½ÓʹÓÃpolyAÊý¾ÝÍÆ¶Ï²î±ð¼ô½Ó»·ÐÎRNAµÄЧ¹û¡£ÔÚÄÔ½ºÖÊÁöÊý¾Ý¼¯ÉÏÓ¦ÓÃCIRI-deepA±êÃ÷¸ÃÄ£ÐÍ¿ÉÓÐЧԤ²âÖ×Áöϸ°ûȺÌåºÍ½¡¿µÏ¸°ûȺÌåÖ®¼äµÄ²î±ð¼ô½Ó»·ÐÎRNA¡£Ñо¿ÍŶÓÒ²½«CIRI-deepAÓ¦Óõ½ÁË10Xµ¥Ï¸°ûÊý¾Ý¼¯ÉÏ £¬×¼È·Ô¤²âÁ˲î±ðϸ°ûȺÌåµÄÌØÒì¸ß±í´ï»·ÐÎRNA¡£ÁíÍâ £¬ÔÚ¿Õ¼äת¼×éÊý¾ÝÖÐ £¬CIRI-deepA¿ÉÓÃÓÚÔ¤²â¿Õ¼äÇøÓòÌØÒì¸ß±í´ïµÄ»·ÐÎRNA £¬²¢ÊµÏÖ¶Ô»·ÐÎRNA±í´ï½øÐпռäÇøÓòˮƽµÄ¿ÉÊÓ»¯¡£ÀûÓÃCIRI-deepAÔ¤²âµÄ¸ß¶ÈÌØÒì±í´ï»·ÐÎRNA £¬¿É½øÒ»²½½âÎö²î±ðÇøÓòµÄϸ°ûÀàÐÍ×é³É¡£

×ÛÉÏËùÊö £¬CIRI-deepÄ£ÐÍ¿ÉÓÐЧÓÃÓÚ¸÷ת¼×éÑù±¾¼äÍÆ¶Ï²î±ð¼ô½Ó»·ÐÎRNA £¬¼«´óÍØÕ¹ÁË»·ÐÎRNAµÄÑо¿¹æÄ£ £¬Îª»·ÐÎRNAÑо¿ÌṩÁËеĸßЧÆÊÎöÒªÁ졣ͬʱ £¬CIRI-deepAÄ£ÐÍ¿ÉÒÔÌṩµ¥Ï¸°û¼°¿Õ¼äˮƽ»·ÐÎRNAµÄÓÐЧ½âÎö £¬ÎªÍÚ¾òϸ°ûÀàÐÍÌØÒìµÄ»·ÐÎRNA±ê¼ÇÎïÌṩÁËÖØÒªµÄÒªÁìѧ¹¤¾ß¡£

¸Ã½á¹ûÒÔ¡°CIRI-Deep Enables Single-Cell and Spatial Transcriptomic Analysis of Circular RNAs with Deep Learning¡±ÎªÌâ £¬ÓÚ2ÔÂ2ÈÕÐû²¼ÓÚAdvanced Science?ÆÚ¿¯¡£ÇòËÙÌåÓý£¨¹ú¼ÒÉúÎïÐÅÏ¢ÖÐÐÄ£©¸ßÔ¶Ñо¿Ô±ÒÔ¼°±±¾©ÉúÃü¿ÆÑ§Ñо¿ÔºÕÔ·½ÇìÑо¿Ô±Îª±¾ÎĵÄͨѶ×÷Õß £¬±±¾©»ùÒò×éÑо¿Ëù²©Ê¿Ñо¿ÉúÖÜ×ÓÝպͱ±¾©ÉúÃü¿ÆÑ§Ñо¿ÔºÕŽðÑô¸±Ñо¿Ô±Îª±¾ÎĵÄÅäºÏµÚÒ»×÷Õß¡£¸ÃÑо¿»ñµÃÁ˹ú¼ÒÖØµãÑз¢¼Æ»®¡¢¹ú¼Ò×ÔÈ»¿ÆÑ§»ù½ð¼°ÖпÆÔºÈ˲ŵÈÏîÄ¿µÄ×ÊÖú¡£

welcome-ÇòËÙÌåÓý

»ùÓÚÉî¶ÈѧϰµÄ»·ÐÎRNA²î±ð¼ô½ÓÔ¤²âËã·¨CIRI-deep


ÂÛÎÄÁ´½Ó

CIRI-deepÔÚÏß²âÊÔ°æ


¸½¼þÏÂÔØ£º
ÍøÕ¾µØÍ¼